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Abstract The spatial evolution of the ionic concentration of

an electrolyte in an isothermal electrochemical cell with a

porous separator between the electrodes was investigated for

large values of Rayleigh number. The reaction kinetics were

described by the Butler–Volmer equation. The full problem,

involving the coupled partial differential equations describing

the velocity field, the ionic concentration, and the electric

potential, was reduced by means of regular and singular per-

turbation theory, to a simplified evolution equation, coupled

with a transcendental function for the ionic concentration and

electric potential; the solution was found to agree well with the

numerical solution of the full problem. In the limit of large and

small cell voltages, closed analytical solutions were secured

for the concentration, potential, and overall current density.

Keywords Natural convection � Reaction kinetics �
Porous separator

Nomenclature

A Constant of integration

B Constant of integration

C0, C1 Expansion coefficient of dimensionless

concentration

C Dimensionless concentration

c(i) Concentration of species i, mol m–3

c(i)
0 Initial concentration of species i, mol m–3

c Weighted concentration, mol m–3

c Dimensionless weighted concentration

D(i) Diffusion coefficient of species i, m2 s–1

D Weighted average diffusion coefficient,

m2 s–1

e Unit vector

F Faraday number, A s mol–1

g Gravitational constant, m s–2

h Half width of free electrolyte region, m

H Half height of free electrolyte region, m

H Dimensionless half height

i Electric current density, A m–2

i Dimensionless electric current density

I Dimensionless polarization curve

k Permeability of separator, m2

L Dimensionless reduced half height
~L Modified dimensionless reduced half

height

NðiÞ Flux of species i, mol m–2 s–1

NðiÞ Dimensionless flux of species i

N Fictious dimensionless flux

p Pressure of electrolyte, Pa

p Dimensionless pressure of electrolyte

r Dimensionless thickness of vertical

boundary layers

Ra Rayleigh number

S0 Dimensionless stratification
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T Temperature of electrolyte, K

t Time, s

t Dimensionless time

V1, V2 Potential at electrodes, V

V Dimensionless potential difference

Vmax Limit value of dimensionless potential

difference

v Velocity of electrolyte, m s–1

v Dimensionless velocity of electrolyte

w Dimensionless vertical velocity of

electrolyte

w± Dimensionless vertical velocity of

electrolyte

x Horizontal coordinate, m

x Dimensionless horizontal coordinate

y Horizontal coordinate, m

z Vertical coordinate, m

z Dimensionless vertical coordinate

a(i) Densification coefficient of species i,

m3 mol–1

b Dimensionless growth velocity of

concentration

c Transfer coefficient

C Dimensionless number

d Dimensionless horizontal boundary

layer thickness

� Perturbation parameter

f Dimensionless slow vertical coordinate
~f Modified dimensionless slow vertical

coordinate
~f0 Constant of integration

g± Dimensionless stretched coordinates

0 Dimensionless concentration

0± Dimensionless concentration

j Dimensionless number

k� Dimensionless concentration

gradient at electrodes

l Kinematic viscosity, m2 s–1

m Dynamic viscosity, kg m–1 s–1

P Dimensionless reduced pressure

r Dimensionless number

s Dimensionless slow time

Uk; k ¼ 0; . . .; 3 Auxiliary functions

u Porosity of separator

/ Electric potential in electrolyte, V

/ Dimensionless electric potential in

electrolyte

/0, /1 Expansion coefficients in dimensionless

electric potential

w0, w1 Expansion coefficients in dimensionless

electric potential

k1; k2; k3 Dimensionless constants

1 Introduction

The performance of most electrochemical systems depends

on mass transport rates, usually in the form of mass transfer

of the participating species to the electrode surfaces. The

subsequent electrochemical reactions on the electrode sur-

face can be strongly influenced by the magnitude of the

overall mass transport to and from the surface. The modes of

mass transport in these systems are migration, diffusion, and

convection. Whereas forced convection can easily be con-

trolled, e.g., via pump-induced flow, free convection depends

on temperature and concentration gradients in systems, such

as metal electrorefining, electroplating, and batteries.

Several studies [1–8] have been carried out to elucidate

the main underlying features of free convection in various

electrochemical systems. A review is given in [9]. Bark and

Alavyoon [3] studied free convection arising during

unsteady electrolysis of a dilute solution with a metal salt

and vertical electrodes due to concentration gradients.

They considered a closed isothermal electrochemical cell

and non-linear reaction kinetics, both analytically and

numerically for large Rayleigh and Schmidt numbers, and

found that mass transport in the free liquid electrolyte

exhibited significant stratification, which sets up thin dif-

fusion dominated layers in the vicinity of the electrodes

and walls, where most of the mass transfer of the ions takes

place. This stratification was shown to directly control the

convective transport in the cell and the local ion concen-

trations along the electrodes, and so had a significant

impact on cell performance.

The purpose of this investigation was to examine the

case when the electrolyte is confined to a porous separator

between the electrodes, as shown in Fig. 1. The main

advantage of such a separator is its ability to prevent short

2H

2h

⊗

z

xyPorous
separator

Anode Cathode

g

Fig. 1 Schematic illustration of an electrochemical cell with a porous

separator, sandwiched between the two vertical electrodes. The cell

geometry and the coordinate system are defined on the right
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circuiting in the cell, arising from metallic bridges forming

between the electrodes [10].

The objectives of this work were to: (i) derive the

thickness of the boundary layers arising from the stratifi-

cation at the electrodes a priori to computations; (ii) derive

a reduced evolution equation, without sacrificing any of the

salient physical features, which is several orders of mag-

nitude faster to solve for than the full model; (iii) secure

closed analytical solutions in the limit of small and large

cell voltages. The benefits of these are the availability of

closed-form analytical solutions for two important limits, a

reduced evolution equation that is cheap to compute away

from those limits, as well as an estimate of the boundary

layer thicknesses that can aid in solving for the full model.

The value of these is further enhanced by the fact that it

becomes increasingly more difficult to solve a full mathe-

matical model numerically as the potential difference

across the cell is increased. The reason can be found in the

non-linear reaction kinetics at the electrodes, which alter

the local ion concentrations and thus the density of the

liquid. These density variations give rise to the free con-

vection, controlling most of the ion transfer to and from the

electrodes, and in turn, the local ion concentrations at the

electrodes.

2 Mathematical formulation of the basic problem

In the following, a two-dimensional electrochemical cell will

be considered, comprising two electrodes of the same metal,

denoted Me, separated by an inert porous medium, as depicted

in Fig. 1. The porous separator is filled with a binary dilute

liquid solution of the metal salt. For a closed-off cell, the

reduction from three space dimensions to two is motivated by

the porous nature of the separator, since changes in the

dependent variables in the normal direction (y-direction) can

be shown to be negligible. For electrochemical cells with flow

of electrolyte through the cell (y-direction), the flow through

the cell has to be sufficiently low, so that changes in the

dependent variables in said direction are small enough for this

approximation to hold. For example, this is the case in

industrial electrorefining, where generally an open tank

design with parallel-plate electrodes is employed. Here, a low

flow rate through the cells allows the accumulated impurities

in the electrolyte or cell slime to drop to the base, without

coming into contact with the cathodes.

On applying a potential difference between the elec-

trodes, with V1 (anode)[ V2 (cathode), at t [ 0, an electric

current starts to flow in the cell. At the anode, the oxidation

Me! Mezþ þ ze� ð1Þ

takes place, where z is the oxidation number of the metal

Me. As the metal ions dissolve in the electrolyte, its density

increases locally compared to the bulk electrolyte, whence

the electrolyte adjacent to the anode starts to sink. On the

cathode, on the other hand, dissolved metal ions are

deposited through the reduction

Mezþ þ ze� ! Me ð2Þ

leading to a decrease of specific weight adjacent to the

cathode and an upward movement of the electrolyte. Now,

as the cell volume is constant and the electrolyte can be

considered incompressible, a circular motion develops. The

same scenario will occur if a current (galvanostatic elec-

trolysis) is applied instead of a potential difference.

A proper description of the transport processes in the

porous separator outlined above requires the introduction

of volume averaged equations and associated superficial

and intrinsic properties [11, 12]. For this purpose, let P and

PðfÞ denote the superficial and intrinsic averages of a

property P (e.g., the concentration), defined as

P ¼ 1

V

Z
V ðfÞ
PdV; ð3Þ

PðfÞ ¼ 1

V ðfÞ

Z
V ðfÞ
PdV : ð4Þ

Here, V is the total volume of the Representative

Elementary Volume (REV), i.e., the volume over which the

volume averaging is carried out, and V(f) is the volume of

the fluid. Introducing the porosity as u = V(f)/V, the two

averages are related through P ¼ uPðfÞ: For the sake of

brevity, we shall in the forthcoming analysis omit the

overlining of the averaged properties, and note that all

dependent variables are intrinsic, except for the velocity

field of the electrolyte, v; the total molar flux of species i,

NðiÞ; and the current density i: Further, the metal ion is

labeled as species 1 and the corresponding anion as

species 2.

In the porous separator, the equation describing con-

servation of momentum is assumed to be given by Darcy’s

law. If p denotes the pressure and c(i) the concentration of

species i, Darcy’s law together with the Boussinesq

approximation takes the following form:

v ¼ � k

l
rpþ 1þ

X2

i¼1

aðiÞ cðiÞ � c
ðiÞ
0

h i( )
q0gez

 !
; ð5Þ

where k is the permeability of the separator, l is the

viscosity of the electrolyte, a(i) is the densification

coefficient of species i, c0
(i) is the initial concentration

of species i, chosen here as the reference concentration.

The density q0 is the initial density of the electrolyte, i.e.,
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with c(i) = c0
(i), and g denotes the acceleration due to

gravity.

Liquid electrolytes are usually considered as incom-

pressible; mathematically this implies that the velocity field

must satisfy

r � v ¼ 0: ð6Þ

For binary or dilute electrolytes, the migration, diffusion

and advection transport mechanisms are described by the

Nernst–Planck law [13]. Denoting the scalar potential of

the electrical field as /, the Nernst–Planck law for the mass

flux of species i, NðiÞ; can be written as

NðiÞ ¼ � zðiÞFu3=2DðiÞ

RT
cðiÞr/� u3=2DðiÞrcðiÞ þ cðiÞv;

i ¼ 1; 2; ð7Þ

where z(i) is the oxidation number of species i, F is

Faraday’s constant, R is the gas constant, and D(i) is the

diffusion constant of species i, which has been modified

according to the Bruggeman formula, u3/2, see [14], to

account for the porous nature of the separator. The

temperature, T, of the electrolyte was assumed to be

constant. Applying conservation of mass of species i yields

u
ocðiÞ

ot
þr � NðiÞ ¼ 0: ð8Þ

Further, the transport of ionic species results in an electric

current density, which can be expressed in terms of the

total superficial mass fluxes of the ionic species, given by

(7), as

i ¼
X2

i¼1

FzðiÞNðiÞ: ð9Þ

As the electrolyte is electrically neutral in every point,

neglecting the electrode double layers, the total electric

current is non-divergent, i.e., the local electric charge of

the system should be equal to zero at all times; this

condition can be stated as

r � i ¼ 0: ð10Þ

For a binary electrolyte the concentration fields are

proportional to each other, since zð1Þcð1Þ þ zð2Þcð2Þ ¼ 0 at

all times due to electroneutrality. It is thus sufficient to

solve for one species only, so it is practical to introduce an

artificial concentration c, given by

c ¼ zð1Þcð1Þ ¼ �zð2Þcð2Þ: ð11Þ

The re-scaled concentration field c has the advantage

of automatically satisfying the local electroneutrality,

(10), when reformulating the Eqs. 7–9 in terms of c. A

reference concentration corresponding to c, c0, is defined

in the same way. Equation 8 can then, after eliminating /,

be recast as

u
oc

ot
þ v � rc ¼ Dr2c; ð12Þ

where the diffusivity, D, is defined by

D ¼ u3=2 zð1Þ � zð2Þ
� �

Dð1ÞDð2Þ

zð1ÞDð1Þ � zð2ÞDð2Þ
: ð13Þ

The proper boundary conditions for this system of

coupled partial differential equations are, to start with,

vð�h; z; tÞ � ex ¼ 0; ð14:1Þ

vðx;�H; tÞ � ez ¼ 0; ð14:2Þ

which states that the normal component of the electrolyte

velocity adjacent to a boundary vanishes. These conditions

are a weaker form of the so-called no-slip conditions and

are often used as boundary conditions in porous media.

As only species 1 takes part in the electrode reactions,

the normal component of the mass flux vector of species 2

on the electrodes is equal to zero:

Nð2Þ � ex ¼ 0; x ¼ �h: ð15Þ

For species 1, matters are more complicated: empirically,

one finds that the concentration affects the local value of

the electric current density at the electrodes. This coupling

mechanism is responsible for the so-called limiting current

phenomenon [13]. It is found that the relation between the

electric current density and the concentrations at the

electrodes is described quite well by the semi-empirical

Butler–Volmer conditions [13], which for the present case

take the following form:

i � exjx¼�h¼ i0 exp
zð1ÞcF

RT
ðV1 � /Þ

� ��

� cð1Þ

c
ð1Þ
0

exp � zð1Þð1� cÞF
RT

ðV1 � /Þ
� �)

;

ð16:1Þ

i � exjx¼h¼ i0

cð1Þ

c
ð1Þ
0

exp � zð1Þð1� cÞF
RT

ðV2 � /Þ
� �(

� exp
zð1ÞcF

RT
ðV2 � /Þ

� ��
;

ð16:2Þ

where i0 is the exchange current density and c is the

transfer coefficient, which will be chosen as c = 1/2 for

simplicity. Returning to the definition of the current

density, Eq. (9), and invoking the zero flux of species 2,
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given by Eq. (15) on the electrodes, one finds the flux of

species 1 at the electrodes:

Nð1Þ � ex ¼
1

Fzð1Þ
i � ex; x ¼ �h:

Through the top and bottom of the cell, there is no net

transfer of species 1 and 2; this condition can be stated as

Nð1Þ � ez ¼ Nð2Þ � ez ¼ 0; z ¼ �H: ð17Þ

Finally, the initial condition is taken to be

cðiÞðx; 0Þ ¼ c
ðiÞ
0 ; i ¼ 1; 2: ð18Þ

From this choice, it follows from (5) that vðx; 0Þ ¼ 0:

3 Dimensionless variables

In this investigation, the initial value of the concentration,

c0 will be used as the scale of the concentration. This is not

an obvious choice, but is an appropriate one, as can be

verified a posteriori, if the concentration is not too small

[3]. For algebraic simplicity, the case where z(1) = –z(2) = 2

will be considered; a corresponding analysis, for a different

choice of z(1) and z(2), can be carried out with only minor

modifications. Now, the following set of dimensionless

variables is introduced:

x ¼ hx�; t ¼ h2

D
t�; i ¼ i0i� ð19:1Þ

/� 1

2
ðV1 þ V2Þ;

1

2
ðV1 � V2Þ

� �
¼ RT

F
ð/�;V�Þ; ð19:2Þ

c ¼ c0 1þ c�ð Þ; NðiÞ ¼ Dc0

h
NðiÞ

�
; ð19:3Þ

v ¼
q0c0gk að1Þ þ að2Þ

� �
2l

v�; ð19:4Þ

pþ q0gz ¼
q0c0gh að1Þ þ að2Þ

� �
2

p�: ð19:5Þ

Whilst scaling, four dimensionless parameters appear:

Ra ¼
q0c0ghk að1Þ þ að2Þ

� �
2lDu3=2

; H ¼ H

h
; ð20:1Þ

C ¼
2 Dð1Þ þ Dð2Þ
� �
Dð1Þ � Dð2Þ

; j ¼ hi0
2Dð1ÞFc0

: ð20:2Þ

The definition of dimensionless potentials in (19.2) is

chosen in order to obtain a symmetric form of the

dimensionless Butler–Volmer equation, see (28.1) and

(28.2) below. Dropping *, the Eqs. 5, 6, and 12 formulated

in terms of these dimensionless variables, become

u
oc

ot
þ Rav � rc ¼ r2c; ð21Þ

v ¼ �rp� cez; ð22Þ

r � v ¼ 0: ð23Þ

The expression for the electric current density takes the

form

i ¼ � 2

jðCþ 2Þ Cð1þ cÞr/þrc½ �; ð24Þ

and the conservation of charge is rewritten as

Cr � ð1þ cÞr/þr2c ¼ 0: ð25Þ

This equation should be compared with Laplace’s equation

r2/ = 0 for the electric potential in a homogeneous

conductor. The more complicated appearance of (25) is due

to two effects. Firstly, the inhomogeneous concentration field

sets up a variable conductivity, which is quantified by the first

term in the left-hand side of (25). Secondly, in an

inhomogeneous electrolyte, transport of charge takes place

also by means of diffusion, which is expressed by the second

term.

The dimensionless counterparts of the boundary condi-

tions for the fluid velocity at the walls (14) become

vð�1; z; tÞ � ex ¼ 0;

vðx;�H; tÞ � ez ¼ 0;
ð26:1Þ

and from (15), (16.1) and (16.2), with the scaling above,

one arrives at

ð1þ cÞ o/
ox
¼ 1

2

oc

ox
; jxj ¼ 1; ð27Þ

oc

ox

����
x¼�1

¼ �j expðV � /Þ � ð1þ cÞ expð�V þ /Þ½ �;

ð28:1Þ

oc

ox

����
x¼1

¼ �j ð1þ cÞ expðV þ /Þ � expð�V � /Þ½ �:

ð28:2Þ

For notational brevity, the right-hand sides of the

Butler–Volmer conditions above will sometimes be

referred to as �k�ðc;/Þ (anode) and kþðc;/Þ (cathode),

respectively. The requirement of insulated horizontal walls

(17) is given by
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oc

ox
¼ o/

ox
¼ 0; jzj ¼ H; ð29Þ

and the dimensionless initial condition (18) is

cðx; 0Þ ¼ 0: ð30Þ

4 Parameters and dimensionless numbers

The physical and operational parameters are summarized in

Table 1, and are chosen so as to keep consistency with [3],

who studied the same system, but for a free electrolyte

comprising a copper sulfate solution. These parameter

values suggest that

Ra ¼ 1:74� 103;C ¼ �10:3; j ¼ 7:20� 10�2;

H ¼ 5;V�1� 10:

The large Rayleigh number, Ra � 1, mirrors the stratifi-

cation in the cell that arises due to the concentration

variations, and will provide the basis for the model

reductions in the following sections.

5 Numerical methods

To complement the upcoming reductions of the full

mathematical model and provide verification of these, the

full model was solved numerically with the finite-element

based solver, Comsol Multiphysics [15]. The full numerical

problem consists of Eqs. 21–23 together with (25), subject

to the conditions (26.1–30) for the five dimensionless

unknown variables v ¼ ðu; vÞ; p, c, and /. The

computational domain, see Fig. 1, was resolved with a

coarser mesh in the bulk and denser mesh close to the walls

and electrodes. The thickness of the boundary layers close

to the electrodes could be predicted based on the findings

of the Prandtl-type solution in the next section. As an

indication of the speed of computations, a typical transient

run would require on the order of 10 CPU minutes on a

2 GHz PC with 1 GB of RAM for around 7 · 104 degrees

of freedom, ensuring mesh-independent solutions. In gen-

eral, it became increasingly more difficult to obtain fully

converged solutions as V was increased. The reduced

parabolic evolution equation together with the transcen-

dental function and steady-state counterpart, to be outlined

in Sect. 7, were solved with Comsol Multiphysics and

Matlab [16]. Compared to the full numerical solution, the

reduced equations could be computed within 1 CPU sec-

ond or less—a reduction of close to three orders of

magnitude in computational cost.

6 A Prandtl-type solution

A simple ansatz is employed to find a solution to the

governing equations, away from the horizontal boundaries.

This results in an order-of-magnitude estimate of the

boundary-layer thickness of the velocity and concentration

fields at the vertical walls and also exposes a natural length

scale in the vertical coordinate. The reasoning in this sec-

tion is a modified version of that in the work by Bark et al.

[17], in which a corresponding study is made for a free

liquid, i.e., using the incompressible Navier–Stokes equa-

tions instead of Darcy’s law.

Firstly, the assumption that k� are slowly varying

functions of c and / is made, so that k� may be taken as

prescribed constants; this choice corresponds to the case of

linear reaction kinetics. Conservation of mass then gives

kþ ¼ �k�: In an attempt to solve the Eqs. 21–23, the

following ansatz is made, which is attributed to Prandtl’s

model of mountain winds in stratified air:

v ¼ wðxÞez; c ¼ bt � S0zþ JðxÞ; p ¼ pðz; tÞ; ð31Þ

where w;J and p are functions of one spatial variable to be

determined from Darcy’s law (22) and the equation

describing the transport of mass (21). The numbers b and

S0 will be obtained from imposing a few natural require-

ments on the solution. It is important to note that the ansatz

(31) is unreasonable near the top and bottom of the cell,

i.e., for z 	 �H: Fortunately, it turns out that using (31) in

the whole cell introduces only minor errors as can be

verified a posteriori. A more detailed discussion of this type

of ansatz is given in [17].

The boundary conditions (28.1–28.2) are then trans-

formed into

Table 1 Physical and operational parameters

Parameter Value

m 1.1 · 10–6 m2 s–1, [3]

D1 7.2 · 10–10 m2 s–1, [3]

D2 1.065 · 10–9 m2 s–1, [3]

i0 1 A m–2, [3]

F 9.6487 · 104 A s mol–1

R 8.314 J mol–1 K–1

k 3.5 · 10–9 m2 (assumed)

zð1Þ; zð2Þ 2, –2

g 9.81 m s–2

a1 + a2 1.678 · 10–4 m3 mol–1, [3]

c0 102 mol m–3 (0.1 M), [3]

h 1 · 10–3 m

H 5 · 10–3 m

T 293 K (20 �C)
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J0ð�1Þ ¼ �k�; J0ð1Þ ¼ kþ: ð32Þ

The incompressibility condition is automatically satisfied

by this ansatz, as is the condition of vanishing horizontal

electrolyte velocity at the vertical cell boundaries. The

corresponding condition at the horizontal cell boundaries

can, however, not be applied to a solution of the kind

suggested by this ansatz. The present solution is thus valid

only away from the horizontal walls.

When the ansatz (31) is inserted into (21) and (22) one

arrives at a system of coupled ordinary differential equa-

tions for 0(x) and w(x):

ub� S0Ra w ¼ J00; wþ J ¼ �P0z; ð33Þ

where P ¼ pþ bzt � 1
2
S0z2: This system has the solution

JðxÞ ¼ Aerx þ Be�rx � ub
r2
�P0z; ð34Þ

wðxÞ ¼ �Aerx � Be�rx þ ub
r2
; ð35Þ

P0z ¼ const.; ð36Þ

where a new parameter, r ¼ ðS0RaÞ1=2; and two constants

of integration, A and B, have been introduced. The

constants are determined from the boundary conditions

(32) as

A ¼ 1

r

kþer þ k�e�r

er � e�r
e�r; ð37:1Þ

B ¼ 1

r

kþe�r þ k�er

er � e�r
e�r: ð37:2Þ

As the Rayleigh number Ra is much larger than unity, r

is large accordingly. From computing approximate

expressions for A and B in the limit where Ra is large,

one obtains the following solutions for 0 and w:

JðxÞ ¼ 1

r
kþe�rð1�xÞ þ k�e�rð1þxÞ
h i

� ub
r2
�P0z; ð38Þ

wðxÞ ¼ � 1

r
kþe�rð1�xÞ þ k�e�rð1þxÞ
h i

þ ub
r2
: ð39Þ

These expressions fulfill the boundary conditions with

an error of the order of e–2r, and in what follows, all

expressions will be truncated at the order of e–r. Here, one

important feature of this solution is revealed, namely the

boundary-layer character exposed by the solution: the

terms within the square brackets in 0(x) and w(x) are

dominant in vertical boundary-layers close to the

electrodes with the thickness of r–1. In the middle region

of the cell, contributions of the order r–2 instead dominate.

To determine b, one may consider the net flux of the

electrolyte through a horizontal plane in the cell, which has

to be equal to zero due to incompressibility:

Z 1

�1

wðxÞdx ¼ 0; ð40Þ

Performing the integration using (39) yields

0 ¼ 2
ub
r2
� kþ þ k�

r2
; ð41Þ

with an error of Oðe�rÞ: Solving for b gives:

b ¼ kþ þ k�
2u

: ð42Þ

This result seems reasonable, since b should vanish if

there is no net influx of mass; that is, if kþ ¼ �k�; which is

the case under consideration at present. However, if this is

not the case, there exists a term in the solution for c that

linearly increases or decreases the concentration with time.

The global change in the concentration originates from

the balance between influx and outflux of ions at the

electrodes. Thus, the solution must obey the following

requirement of global conservation of mass:

Z 1

�1

Z H
�H

ucdzdx ¼ t

Z H
�H

J0ð1Þ � J0ð�1Þ½ �dz: ð43Þ

Substitution of the explicit expression for c as given by

(39) into the equation above and performing the integral

shows that (52) can be written as

4ubtHþ
Z 1

�1

Z H
�H

JðxÞdzdx ¼ 4ubtH; ð44Þ

or

Z 1

�1

Z H
�H

JðxÞdzdx ¼ 0: ð45Þ

When this is performed explicitly, one finds that P0z ¼ 0;

and thus, 0(x) = –w(x).

To determine S0; one can formulate an argument due to

a spatial mass balance: Eq. 21 can be written as

u
oc

ot
þr � N ¼ 0; ð46Þ

where

N ¼ Ravc�rc ð47Þ

is the fictitious dimensionless mass flux vector governing

the spatial distribution of c. Its interpretation in terms of

the fluxes of species 1 and 2 together with the
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expression for the dimensionless electric current density

(24) is given by

Nð1Þ ¼ 1

2
N þ jðCþ 2Þ

C� 2
i

� �
; ð48:1Þ

Nð2Þ ¼ 1

2
N � jið Þ: ð48:2Þ

For a steady solution the total net mass flux through any

horizontal layer in the cell should vanish, that is

0 ¼
Z 1

�1

ez � Ndx ¼
Z 1

�1

ez � Ravc�rcð Þdx

¼
Z 1

�1

�c0z þ Rawc
� 	

dx:

ð49Þ

If the expressions (31) for c and w are substituted into (49),

integration followed by some algebra yields

S0 ¼
k2
þ þ k2

�
4

 !2=5

Ra�1=5 þO Ra�3=5

 �

: ð50Þ

This result exposes an important feature of the solution,

namely the existence of a natural length scale in the

vertical coordinate, since jc0zj �Ra�1=5: The result (50) also

implies that

r ¼ ðS0RaÞ1=2�Ra2=5; ð51Þ

whence the vertical boundary-layer thickness, r–1, is of the

order Ra–2/5. These results should be compared with the

results obtained in [17] with the incompressible Navier–

Stokes equations, where the vertical length scale was shown

to be * Ra–1/9, and where the vertical boundary-layer

thickness was determined as being of the order of * Ra–2/9.

The numerical solution of the steady version of the

problem (21–23) together with (25), subject to the condi-

tions (26.1–30) supports these results, see Fig. 2.The order-

of-magnitude estimates of the vertical length scale (50) and

the vertical boundary-layer thickness (51) will form the

basis upon which the next section rests.

7 Extension to non-linear reaction kinetics

In the previous section it was found that for large values of the

Rayleigh number, the concentration in the bulk of the cell

varies vertically on a length scale of the order of Ra–1/5. It was

also shown, that the concentration, as well as the velocity,

exhibits a boundary-layer character close to the electrodes,

with the corresponding boundary-layer thickness Ra–2/5. It is

thus natural to introduce a small expansion parameter e = Ra–

1/5 and to use the following variables

g� ¼
1
 x

�2
; f ¼ �z; s ¼ �2t: ð52Þ

In the numerical results to be presented later, e = 0.225, as

follows from the value of Ra given in Sect. 4. Here the

‘stretched’ horizontal coordinates g± are of the order of

unity in the vertical boundary layers at the cathode and

anode, respectively. The ‘slow’ vertical coordinate f is

chosen in such a way that the variation of the concentration

with f is of the order of unity. The new time scale

introduced in s above is chosen in such a way that the local

rate-of-change of the concentration will be of the same

order of magnitude as the vertical diffusive transport of

mass. With these variables, and based on the results

obtained in the previous section, a new ansatz is formulated

according to

c ¼ �Cðf; sÞ þ �2½JþðC; gþÞ þ J�ðC; g�Þ� þ . . . ð53Þ

v ¼ ð�5½uþðC; gþÞ þ u�ðC; g�Þ�; �2½wþðC; gþÞ þ w�ðC:g�Þ�Þ
þ . . . ð54Þ

In these expressions, the functions 0 and w are

redefined as

Fig. 2 Streamlines and velocities (v) of the electrolyte for Ra = 1.74

· 103, C ¼ �10:3; j = 7.20 · 10–2, H ¼ 5;V ¼ 3: The boundary

layers adjacent to the anode (x = –1) and cathode (x = 1) are clearly

visible
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J�¼�w�¼
oC
of

� 
�1=2

k�ðc;/Þexp � oC
of

� 
1=2

g�

" #
þOð�Þ;

ð55Þ

and as a consequence:

r ¼ ��2 oC
of

� 
1=2

: ð56Þ

For this new ansatz, C� 1 for all f and s, and 0±, u± and

w±* 1 when g±* 1. It is clear that for the assumption of

slow vertical variation to be fulfilled, and for the boundary-

layer character of the solution to be well-defined:

�4 � oC
of
� ��1: ð57Þ

The functions k±(c, /) are no longer regarded as constants,

but instead dependent on the concentration and the elec-

trical potential in the electrolyte at the electrodes, as

quantified by the Butler–Volmer conditions (28.1) and

(28.2). The order-of-magnitude of the horizontal velocity

component, e5, is found from the incompressibility condi-

tion. The ansatz (53) and (54) is analogous to the one used

in [3].

In order to derive an evolution equation for C; one can

consider the total net mass flux of species 1 into a specified

control volume. The control volume that will be used here

is the thin horizontal strip between the two horizontal

planes z = z0 and z = z0 + dz. If the horizontal average (or

rather, twice the horizontal average) per unit length in the

y-direction of an arbitrary quantity, say QðxÞ; denoted by

Qh i is defined according to

Qh i �
Z 1

�1

QðxÞdx; ð58Þ

the total mass of species 1 in the thin horizontal strip can be

approximated with u cð1Þ
� �

dz: Further, conservation of

species 1 requires, in the limit where dz tends to zero, that

�2u
o

os
cð1Þ
D E

¼ � � o

of
Nð1Þ � ez

D E

þ Nð1Þjx¼�1 � Nð1Þjx¼1


 �
� ex: ð59Þ

The aim is now to formulate this partial differential

equation into one containing C; s and f only: one obtains

from relation (48.2)

Nð1Þ � ex

��
x¼�1
¼ 1

2
N � ex þ

jðCþ 2Þ
C� 2

i � ex

� 
����
x¼�1

; ð60Þ

and, since there is no mass flux of species 2 through the

electrodes (15), one obtains

N � exjx¼�1¼ ji � exjx¼�1: ð61Þ

Thus, one can write

Nð1Þ � ex

��
x¼�1
¼ jC

C� 2
i � ex

����
x¼�1

: ð62Þ

The right-most term in (59) can now be written as

jC
C� 2

i � exjx¼�1�i � exjx¼1

� 	
¼ � jC

C� 2

oi � ex

ox

� �
: ð63Þ

Moreover, as the electric current density is non-divergent, i

has to obey the following relation:

oi � ex

ox
¼ �� oi � ez

of
; ð64Þ

which leads to

� jC
C� 2

oi � ex

ox

� �
¼ � jC

C� 2

oi � ez

of

� �
¼ � jC

C� 2

o i � ezh i
of

:

ð65Þ

By observing that z(1) = 2 and thus, according to (11),

c = 2c(1), one obtains cð1Þ
� �

¼ �C þ Oð�Þ; so that (59) can

be rewritten as

�u
oC
os
¼ 1

2

o

of
N � ezh i � j i � ezh ið Þ: ð66Þ

From the definition (47) of N; and with the new ansatz for

(0±,w±), one finds that

N � ezh i ¼ 2�
oC
of
þ 1

�
ðJþ þ J�Þðwþ þ w�Þh i: ð67Þ

The rightmost term in the above equation can be calculated

from (55) to sufficient order, and the result is

ðJþ þ J�Þðwþ þ w�Þh i ¼ ��2 k2
þ þ k2

�
2

oC
of

� 
�3=2

þOð�3Þ:

ð68Þ

The evolution equation for C then takes the form

u
oC
os
¼ o

of
oC
of
�

k2
þ þ k2

�
4

oC
of

� 
�3=2
" #

� j
2�

o

of
i � ezh i:

ð69Þ

In order to express this equation in terms of C; s and f only,

expressions for i � ezh i and k2
þ þ k2

� in terms of C have to be

secured. These expressions will turn out to depend on the

explicit form of the electric potential /.

In order to solve Eq. 25 for the electric potential /, this

variable is expanded into an outer and an inner expansion,

respectively, according to
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/ ¼ /0ðx; f; sÞ þ �2/1ðx; f; sÞ þ ::;
jxj\1�Oð�2Þ
jfj\L �Oð�Þ

�
ð70:1Þ

/ ¼ w0�ðg�; f; sÞ þ �2w1�ðg�; f; sÞ þ ::;
g��1;

jfj\L �Oð�Þ;

�
ð70:2Þ

where expression (70.1) is valid outside the vertical

boundary layers at the electrodes, whereas expression

(70.2) holds within these boundary layers. The aim is

now to find these expressions explicitly, and to tie

them together within a uniformly valid expansion that

will tend to (70.1) outside the boundary layers, and to

(70.2) next to the electrodes; see e.g., [18] and [3] for

details of the closely related problem with a free liquid

electrolyte. In fact, for the electric potential, but not

for the concentration, the analysis is identical to that

in [3].

These expansions are substituted into Eq. 25, resulting

in differential equations for / and w±, respectively:

o2/0

ox2
¼ 0; ð71:1Þ

Cð1� CÞ o
2/1

ox2
þ C

o

of
ð1� CÞ o/0

ox

� �
� o2C

of2
¼ 0; ð71:2Þ

Cð1� CÞ o
2w0�
og2
�
¼ 0; ð71:3Þ

o2w1�
og2
�
þ o2J�

og2
�
¼ 0: ð71:4Þ

These equations are readily solved, and after matching the

inner and outer expansions, one arrives at the following

uniformly valid expansion:

/ ¼U0ðf; sÞ þ U1ðf; sÞxþ �2 U2ðf; sÞ þ U3ðf; sÞx½ �

� �2 1

Cð1� CÞ
o

of
Cð1� CÞ x2

2

oU0

of
þ x3

6

oU1

of

� 
��

� x2

2

oC
of

�
� ðJþ þ J�Þ

�
; ð72Þ

where the unknown functions Uk; k ¼ 0; . . .; 3; can be

determined in terms of C from the boundary conditions at

the electrodes. In the present work, the analysis is

terminated at Oð�2Þ; i.e., only U0 and U1 will be

determined. The expression (72) is then inserted into the

boundary condition (27), whence

oJ�
og�
¼ 
 2Cð1� CÞ

Cþ 2
U1; x ¼ �1; ð73Þ

which, when substituted into the Butler-Volmer conditions

(28.1) and (28.2) yields

2Cð1� CÞ
Cþ 2

U1 ¼ � j expðV � U0 þ U1Þ½

�ð1� CÞ expðU0 � U1 � VÞ�;
ð74:1Þ

2Cð1� CÞ
Cþ 2

U1 ¼ � j ð1� CÞ expðU0 þ U1 þ VÞ½

� expð�V � U0 � U1Þ�:
ð74:2Þ

The solution for U0 is

U0 ¼ �
1

2
lnð1� CÞ; ð75Þ

and U1 can be determined from the following

transcendental equation:

U1 ¼ �
jðCþ 2Þ

Cð1� CÞ1=2
sinhðU1 þ VÞ: ð76Þ

Furthermore, the term i � ezh i can be calculated from (24):

i � ezh i ¼ � 2�ðC� 2Þ
jðCþ 2Þ

oC
of

; ð77Þ

for k� one gets

kþ ¼ �k� þ Oð�Þ ¼
2Cð1� CÞ
ðCþ 2Þ U1 þOð�Þ; ð78Þ

and thus the evolution equation for Cðf; sÞ becomes

u
oC
os
¼ o

of
2C

Cþ 2

oC
of
� 2C2ð1� CÞ2

ðCþ 2Þ2
U2

1ðCÞ
oC
of

� 
�3=2
" #

:

ð79Þ

It is instructive to compare this non-linear parabolic

equation with the corresponding equation found in [3] for a

free liquid electrolyte: firstly, the evolution equation for the

concentration obtained in that work differs from (79) in

terms of the numerical coefficients; secondly, and most

importantly, the exponent of the derivative oC=of was

found to be –5/4 for a free liquid electrolyte, as compared

to –3/2 for the porous separator. The latter difference will

give rise to a qualitative difference in the asymptotic

stratification, which will be discussed in the next section.

Furthermore, for the case of a free electrolyte, the

‘diffusivity’, is for small values of oC=of of the order of
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ðoC=ofÞ�9=4:In contrast, the corresponding diffusivity for

the porous separator is instead ðoC=ofÞ�5=2; which is thus

larger for small values of oC=of: This means that for a

weak stratification, the ‘memory’ of the solution is very

short. This observation, which will prove useful for

determining the initial conditions later, is discussed further

in [17].

The boundary conditions that are required for (79)

should prescribe the values of CðfÞ when f ¼ ��H � �L:
In addition, the aspect ratio, H; is here considered to be

*e–1, whence L must be * 1. As the assumption of a slow

vertical variation of C breaks down at the top and bottom

regions of the cell, where horizontal boundary layers

appear, there is a priori no accessible boundary conditions

for CðfÞ in these regions. However, it is reasonable to

require, since species 2 is not produced or consumed at the

electrodes, that for all values of s, Nð2Þ � ez

� �
¼ 0 at the top

or bottom regions of the cell. As pointed out by Bark and

Alavyoon in [3], the terms within the square brackets on

the right-hand side of (79) corresponds to Nð2Þ � ez

� �
; which

is thus equal to zero at the horizontal boundaries at the top-

and bottom of the cell. Following [3], we require that this

also holds for CðfÞ at f ¼ �L: Equating the terms within

the square brackets to zero, one obtains the boundary

condition

oC
of
¼ C

Cþ 2

� 
2=5

½ð1� CÞjU1ðCÞj�4=5; f ¼ �L ð80Þ

The initial condition should be obtained by matching the

solution to (79) and (76) to an inner solution in time, i.e., a

solution on the timescale t = h2t*/D*1, see definition

(19.1). Such a solution is not accessible in the present

work. However, in [17], where a similar difficulty is

encountered, it was shown that an equation of the type of

(79) soon looses its memory of an initial condition with not

too steep concentration gradients, due to the large

diffusivity discussed above. This suggests that as long as

the initial condition does not introduce a strong

stratification, it can be chosen quite freely. Further, the

initial condition should satisfy the global conservation of

mass and provide, for numerical reasons, at least a

continuous first order derivative of C: For this purpose,

an initial condition of the form

Cðf; 0Þ ¼ k1f; fj j\L � d; ð81:1Þ

Cðf; 0Þ ¼ signðfÞ k2 þ k3 exp �L� fj j
d

� 
� �
; fj j 
L � d;

ð81:2Þ

can be employed. Here, d is an assumed thickness of the

initial horizontal boundary layers at the top and bottom of

the cell, and the constants k2 and k3 are determined from

matching (81.1) and (81.2) and their first derivatives with

respect to f at f ¼ L� d: One then obtains

k2 ¼ k1ðL � 2dÞ; ð82:1Þ

k3 ¼ k1d expð1Þ; ð82:2Þ

and k1 is determined from boundary condition (80) for the

chosen value of d.

The solution to the one-dimensional parabolic PDE (79)

and transcendental function (76), subject to the initial and

boundary conditions (81.1), (81.2) and (80), together with

the full numerical solution are depicted in Figs. 3–5.

Here, several features are apparent: foremost is the good

agreement between the reduced model and the full

numerical counterpart. In Fig. 3, where the vertical con-

centration in the center of the cell (x = 0) is depicted, quite

moderate deviations between the reduced model and full

numerical model predictions can be seen close to the lower

wall of the cell, as the approximate approach looses its

validity there. Somewhat surprising, however, is the good

agreement close to the upper wall where the reduced model

is also invalid. Further, as expected, the concentration

profile is more uniform at low voltages and becomes

increasingly less so at higher voltages, as more and more

cations are dissolved at the anode for higher currents,

increasing the liquid density locally, causing it to move to

the bottom of the cell. In the horizontal direction of the cell

(z = 0), the concentration is constant in the bulk, as can be

inferred from Fig. 4. In the vicinity of the anode, however,

the concentration increases due to the dissolution from the

metal, and conversely, on the cathode, it decreases due to

the metal consumption. The thickness of the dimensionless

−1 −0.5 0 0.5 1 1.5 2
−5

−4

−3

−2

−1

0

1

2

3

4

5

Fig. 3 The vertical concentration profile: c as a function of z.

Comparisons between the steady-state solutions to the simplified

evolution Eq. 79 (solid curves) and the corresponding solutions of the

full problem, for V ¼ 1 ð(Þ;V ¼ 3 ð.Þ; and V ¼ 5 ðMÞ; for x = 0
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boundary layers at the electrodes is around 0.1, which is of

the same order of magnitude as the earlier predicted

thickness of Ra–2/5. Increasing cell voltage sees steeper

concentration gradients close to the electrodes and a

decreasing overall steady-state concentration in the middle

of the cell. The steep concentration variations in the

stratification layers give rise to the free convection as the

denser fluid at the anode flows downwards, and the less

dense fluid at the cathode flows upwards. This behavior is

illustrated in Fig. 5 for the vertical velocity. The magnitude

of the vertical velocity is the highest at the electrodes due

to the slip conditions and decreases towards the bulk,

where there are no horizontal concentration variations, and

hence no driving force for a convective motion. Further,

the velocity increases with increased cell voltages as the

concentration gradients then become more pronounced at

the electrodes.

From the definition of the electric current density (24),

the concentration (53), the boundary conditions (28.1),

(28.2) and (27) and formula (78), the current density in the

normal direction at the anode can be determined as

i � exjx¼�1¼ �
2Cð1� CÞ
jðCþ 2Þ U1: ð83Þ

The local current density along the anode mirrors the

concentration profile, as can be inferred from Fig. 6, where

the current density is almost constant for the low cell

voltage V ¼ 1: Increasing cell voltages lead to a more non-

uniform distribution, for which the local current density is

higher near the bottom of the cell and decreases upwards

along the anode. While it is desirable to run electrochem-

ical applications, such as electrorefining or electroplating,

at high cell voltages for increased rates of production, the

resulting non-uniform current density distribution limits

the operating voltage as an even current density distribu-

tion is of importance for the final product.

Thus far, the reduced model has been found to agree

well with the full numerical counterpart and at a compu-

tational cost that is significantly lower, as discussed in Sect.

5. This can be attributed to the reduction in spatial

dimensionality of the simplified model. Once Cðf; sÞ is

known, an approximate two-dimensional solution, valid

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

Fig. 4 The horizontal variation of the concentration: c as a function

of x for z = 0. Comparisons between the steady-state solutions to the

simplified evolution Eq. 79 (solid curves) and the corresponding

solutions of the full problem, for V ¼ 1 ð(Þ;V ¼ 3 ð.Þ; and

V ¼ 5 ðMÞ

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.1

−0.05

0

0.05

0.1

Fig. 5 The horizontal variation of the vertical velocity: w as a

function of x at z = 0. Comparisons between the steady-state solutions

to the simplified evolution Eq. 79 (solid curves) and the correspond-

ing solutions of the full problem, for V ¼ 1 ð(Þ;V ¼ 3 ð.Þ; and

V ¼ 5 ðMÞ

Fig. 6 The normal component of the electric current density: i � ex at

the anode (x = –1) as a function of the vertical coordinate z.

Comparisons between the steady-state solutions, in terms of (83), of

the simplified evolution equation (79) (solid curves) and the

corresponding electric current density that stems from the solution

to the full problem, for V ¼ 1 ð(Þ;V ¼ 3 ð.Þ; and V ¼ 5 ðMÞ
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outside the horizontal boundary layers on the top and

bottom walls, can easily be computed from Eqs. 53–55, 72

and 76 together with (80). Such a solution, extended to the

top and bottom walls, is shown in Fig. 7 for the cell

potential and concentration. Clearly, the reduced model

predictions follow the full numerical solution closely,

except, as expected, at the lower and upper walls; however,

this error is modest.

Finally, the transient behavior of the electrolysis is

demonstrated in Fig. 8 for the reduced model in the middle

of the cell. As outlined above, it is possible to construct an

approximate two-dimensional solution at every time step. It

is apparent from this picture that the error introduced by the

ad hoc initial condition comprised by (81.1) and (81.2)

decays rather rapidly. As pointed out in [17], this is due to

stratification increasing with time.

8 Approximate steady solutions

The steady solution is obtained by integrating the right-

hand side of (79) twice with respect to f. The first inte-

gration is trivial. Taking into account that the net mass flux

density of species 2 at any horizontal cross-section of the

cell is zero determines the constant of integration. One

finds that

dC
df
¼ C

Cþ 2

� 
2=5

½ð1� CÞjU1ðCÞj�4=5: ð84Þ

An exact solution to this differential equation coupled with

the transcendental equation for U1 is most likely out of

reach; we can, however, secure approximate solutions via

perturbation methods. As the non-linearity of the solution,

introduced by the non-linear reaction kinetics, increases

with higher applied voltages, a steady solution in the limit

where V is large is of interest. For such a solution, an

approximate expression for U1 in the present limit is

required. From iteration, one finds from (76) the following

expression in this limit:

U1ðCÞ ¼ �V þ arcsinh rð1� CÞ1=2V
h i

þ . . . ð85Þ

where

r � C
jðCþ 2Þ ð86Þ

has been introduced. Defining a new vertical coordinate

according to ~f � jrð Þ2=5f; j~fj � jrð Þ2=5L � ~L; the Eq. 84

can be written as

dC
d~f
¼ V4=5ð1� CÞ4=5

1� 4

5V arcsinh rð1� CÞ1=2V
h i� �

þ . . .

ð87Þ

Assuming an asymptotic form according to 1� C ¼
C0 þ C1 þ . . .; with C1�C0 for large V; one arrives at

the following expression for C0:

C0ð~fÞ ¼ V4 ð~f0 � ~fÞ5

55
; ð88Þ

where ~f0 is a constant of integration. Thus, to lowest order,

the concentration is given by a fifth-order polynomial in the

vertical coordinate; the correction term C1 is calculated in

the appendix. Expression (88) should be compared to the

Fig. 7 Contours of constant potential in the separator, together with a

field plot of the concentration, for the case V ¼ 3: The left figure

illustrates the solution of the simplified theory according to (79),

whereas the corresponding solution of the full numerical problem is

shown in the right figure
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Fig. 8 Unsteady electrolysis. The evolution toward steady state

described by the evolution Eq. 79 at x = 0 for V ¼ 3; at t = 0, 0.1,

0.5, 1, and 5
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corresponding ninth-order polynomial found by Bark and

Alavyoon in [3]. The constant ~f0 is determined from the

constraint that C0 has to fulfill the requirement of global

conservation of mass

1 ¼ 1

2~L

Z ~L

�~L
ð1� CÞd~f: ð89Þ

For a stable solution, the concentration decreases with

height; it is easy to see that for this to be the case, we must

have ~f0
 ~L; which also guarantees that the concentration

is non-negative. Applying (89) to C0, one finds that ~f0 is a

root of a sixth-order polynomial,

~f0 þ ~L

 �6

� ~f0 � ~L

 �6

¼ 12 � 55 ~L
V4

: ð90Þ

It is straight-forward to show that for a solution ~f0
 ~L to

exist, one must require

V � 5

2

� 
5=4

61=4 ~L�5=4 � Vmax: ð91Þ

For any given height of the cell there is thus an upper

limit to the applied voltage in order for the term C0 in the

expansion of the concentration to be valid. For solutions

where V\Vmax; Eq. 90 must be solved by numerical

methods. For the special limiting case where V ¼ Vmax;

one finds by analytical means that ~f0 ¼ ~L: It should,

however, be pointed out that the resulting solution offers an

interpretational challenge at the upper cell boundary, since

the concentration gradient vanishes there, which implies

infinitely thick vertical boundary layers through (56). This

limitation is not very serious, however, as we already know

that our solution is only valid outside the boundary layers

on the horizontal cell boundaries.

It turns out that Vmax ¼ 3:8 for the base case of

parameter settings, which is too low for the approximate

expression of C to be accurate. In this case, one has to

resort to the reduced evolution equation and transcendental

function to compute C; however, an adjustment of the

width, h = 0.1 m, of the electrochemical cell for the base

case, whilst retaining H ¼ 5; raises the maximal applied

voltage to Vmax ¼ 12:1; which is depicted in Fig. 9 for the

formula (88), and the numerical solution of the steady state

of (79) for four different values of V and for V ¼ Vmax: The

semi-analytical expression for V\Vmax and the closed

analytical expression for V ¼ Vmax can be seen to agree

well with the numerically computed steady-state of the

evolution Eq. 79.

Proceeding to small values of V; which corresponds to

the case of linearized reaction kinetics, an expression for

U1ðCÞ can be secured from regular perturbation theory:

U1 ¼ �
1

1þ rð1� CÞ1=2
V þ OðV3Þ: ð92Þ

For physical reasons, it is natural to assume that, in this

situation, the concentration C is also small, whence, from

iteration, one finds that

CðfÞ ¼ jr

ð1þ rÞ2

" #2=5

V4=5f; ð93Þ

where the requirement of global conservation of mass has

been accounted for. As expected, the stratification is linear

in this case. This formula is compared in Fig. 10 with the

corresponding steady numerical solution of (79) for small

values of the applied voltage V: The agreement is sur-

prisingly good even up to V ¼ 0:5:

The total electric current I is now defined by

I ¼
Z L
�L

i � exjx¼�1df: ð94Þ

From substitution of (83) with the expression for U1 in the

present limit (85) together with (88) into (94) one arrives

for V � 1 at the following expression for the total current

(the correction term is given in the appendix):

I 	 4rLV: ð95Þ

This expression together with the correction term gives

for V ¼ Vmax the value I ¼ 3:3: This should be compared

to the corresponding value calculated from the numerical

solution to the steady version of (79) which is I ¼ 3:6:
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Fig. 9 The vertical steady-state stratification. Comparisons between

the solutions (x = 0) for large V given by (88) (solid curves) and the

corresponding numerical steady-state solutions of the evolution

Eq. 79, for V ¼ 3 ð.Þ;V ¼ 5 ðMÞ and V ¼ 7 ð(Þ: This comparison

is also made for the limiting case, where V ¼ Vmax ð�Þ: Here,

Ra = 1.74�105, C ¼ �10:3; j = 7.2, and H ¼ 5
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Thus the error is *8%, which is acceptable given the fact

that Vmax ¼ 12:1 is not really large. For V[Vmax; the

physical model of the motion of the electrolyte breaks

down, c.f. the discussion following (91). Thus, no limiting

current was predicted by this simplified theory. The total

current for the case of small values of V is given by

I ¼ 4r
1þ r

LV þ O V13=5

 �

: ð96Þ

This result is illustrated and compared with the

numerical solution of (79) for the polarization curve in

Fig. 11. The corresponding expression for a free

electrolyte found in [3] is erroneous, and should be

replaced with:

I ¼ 29=4rLV;

where the somewhat different notation in [3] has been used.

Clearly, the closed analytical expressions capture the

behavior of the overall current density in their respective

limits.

9 Conclusions

Unsteady electrolysis of a binary electrolyte confined to a

porous separator has been investigated for large values of

Rayleigh number. It has been shown that mass transport

takes place mainly in vertical boundary layers at the

electrodes with the thickness of the order of Ra–2/5. An

evolution equation for the concentration as a function of

time and the vertical coordinate, coupled with a transcen-

dental equation, has been derived using perturbation

methods. The solution of the simplified equations was then

compared with the corresponding numerical solution of the

full problem for various situations, and the agreement was

found to be good. Further reductions were possible for the

case of steady-state conditions and in the limit of small and

large cell voltages: for the former, closed analytical solu-

tions were secured for the potential and concentration. For

the latter, a semi-analytical expression was derived for the

case of V\Vmax; and in the form of a closed analytical

expression for the case of V ¼ Vmax: Finally, the overall

current could be secured in both limits, i.e., small and large

potentials.
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10 Appendix

For the correction term C1 for the concentration, one finds

that

C1ð~fÞ ¼C1ð�~LÞ C0ð~fÞ
C0ð�~LÞ

" #4=5

þ 4

5V1=5
C0ð~fÞ
h i4=5

�
Z ~f

�~L
arcsinh rV C0ð~f0Þ

h i1=2
� �

d~f0:

ð97Þ

The constant C1ð�~LÞ should be determined so that the sum

C0 + C1 satisfies the requirement (89). This yields, after

some algebra,
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Fig. 10 The vertical steady-state stratification. Comparisons (x = 0)

between the solutions for small V given by (93) (solid curves) and the

corresponding numerical steady-state solutions of the evolution

Eq. 79, for V ¼ 0:01 ð�Þ;V ¼ 0:1 ð.Þ;V ¼ 0:5 ðMÞ; and V ¼ 1 ð(Þ
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Fig. 11 The polarization curve: comparison between the steady

solution of (79), (•), and formula (96) (solid line)

J Appl Electrochem (2007) 37:1287–1302 1301

123



C1ð�LÞ ¼
4

5V1=5

C
4=5
0 ð�LÞ

C0ð�LÞ � C0ðLÞ

" #

�
Z L
�L

C0ðLÞ � C0ð~fÞ
h i

arcsinh rV
ffiffiffiffiffiffiffiffiffiffiffi
C0ð~fÞ

q� �
d~f:

ð98Þ

For the special case V ¼ Vmax one gets

C1ð�~LÞ ¼ � 4

5 � 61=5V1=5
max

J ; ð99Þ

where the integral J in the above expression, given by

J ¼
Z ~L

�~L
V4

max

ð~L � ~fÞ5

55
arcsinh rV3

max

~L � ~f
5

 !5=2
2
4

3
5d~f

ð100Þ

can be performed explicitly in terms of elliptic functions.

As the applied voltage is assumed to be large, J can be

expanded for large values of Vmax; and one finds

J ¼ ~L ln 2rVmaxð Þ þ . . . ð101Þ

and the following expression for the correction term C1 of

the concentration:

C1 ¼ �
4

15
V3

max

ð~L � ~fÞ4

54
~L ln 2rVmaxð Þ
�

�3

Z ~f

�~L
arcsinh rV3

max

~L � ~f0

5

 !5=2
2
4

3
5d~f0

9=
;:

ð102Þ

The correction term for the polarization curve where

V ¼ Vmax also contains the integral J ; and is given by

Ið1Þ ¼ �4rL ln 2rVmaxð Þ: ð103Þ

Further, the correction to the concentration profile when the

applied voltage is small is found to be

Cð1Þ ¼ 1

15

ð2þ rÞ
ð1þ rÞ13=5

V8=5 ~L2 � 3~f2

 �

: ð104Þ
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